Minimum Required Climb Angle Physical Law Present

Minimum Required Climb Angle Physical Law Present

Create a short instructional presentation (maximum of 6 content slides) that explains/details your selected example and how you arrived at your results for all of the requested physical aspects. Detailed inputs and desired calculations are summarized in Option A Details. If you would like to print the activity instructions, be sure to expand all of the panels before using the print feature for your browser.

Please proceed to the Option A – Details section before continuing to the next page.

For this assignment select and research a common jet-type transport aircraft (later in the course we will get into more details of the differences between power-producing and thrust-producing propulsion systems, but for now, the main point is to have thrust directly as a force available for the introductory analysis of rectilinear motion).

In contrast to formal research for other work in your academic program at ERAU, Wikipedia may be used as a starting point for this assignment. However, do not use proprietary or classified information even if you happen to have access in your line of work.

For your selected aircraft, research and present the following information in your instructional presentation:

  1. Selected aircraft
  2. Maximum takeoff weight (MTOW)
  3. Engine type, number, and rated thrust, as well as total available thrust (sum of all engines)
  4. Takeoff distance at MTOW

Utilizing the above researched information, derive and present (in an instructional way) approaches and solutions to the following problems:

  1. If your selected aircraft’s takeoff speed at MTOW was assumed to be 150 kts (i.e., the speed that is reached in the above researched takeoff distance), explain how to find and determine:
    1. The total acceleration a [ft/s2] during takeoff roll
    2. The sum of retarding forces FR [lb] (drag + friction) that was present during takeoff
    3. The time t [s] it took for this takeoff
  2. Given the researched knowledge about the aircraft’s thrust, explain for a specific airspeed example how to determine the power P [HP].
  3. For a specific example related to your researched aircraft data, explain how to determine potential EPot [ft-lb], kinetic EKin [ft-lb], and total energy ETot [ft-lb].
  4. For a specific example, explain how the minimum required climb angle AOC [deg] to clear an obstacle can be calculated from knowledge about the obstacle’s height and its distance from the point of takeoff.

Create a short instructional presentation (maximum of 6 content slides) that explains/details your selected example and how you arrived at your results for all of the requested physical aspects. Detailed

Calculate your order
Pages (275 words)
Standard price: $0.00
Client Reviews
4.9
Sitejabber
4.6
Trustpilot
4.8
Our Guarantees
100% Confidentiality
Information about customers is confidential and never disclosed to third parties.
Original Writing
We complete all papers from scratch. You can get a plagiarism report.
Timely Delivery
No missed deadlines – 97% of assignments are completed in time.
Money Back
If you're confident that a writer didn't follow your order details, ask for a refund.

Calculate the price of your order

You will get a personal manager and a discount.
We'll send you the first draft for approval by at
Total price:
$0.00
Power up Your Academic Success with the
Team of Professionals. We’ve Got Your Back.
Power up Your Study Success with Experts We’ve Got Your Back.

Order your essay today and save 7% with the discount code ESSAYHELP7